Spotlight [焦點報導]

Murphy art

[連結] 沙畫創作, 主題串連(DJ接歌)

作者: Blu


kevinjc 發表在 痞客邦 留言(0) 人氣()


kevinjc 發表在 痞客邦 留言(0) 人氣()

[筆記]

時間 崩解 洪流 流竄  道路
DNA
火山之火花 淹沒
陰謀

kevinjc 發表在 痞客邦 留言(0) 人氣()


kevinjc 發表在 痞客邦 留言(0) 人氣()

火影 515 情報 大戰、開戰!


兜太厲害了 -
用穢土轉生了
曉成員

kevinjc 發表在 痞客邦 留言(7) 人氣()

music by Chris Clark
video by Clemens Kogler


kevinjc 發表在 痞客邦 留言(0) 人氣()

啟發: [魁儡的夢想--變成人類], [女人愛美,死而後已],

[當你築高塔窺見上帝,祂總不留情的踢你回人間],

[女人─即使變成機器,愛美的靈魂猶存],

 

kevinjc 發表在 痞客邦 留言(0) 人氣()

Algorithm

The following algorithm is an agglomerative scheme that erases rows and columns in a proximity matrix as old clusters are merged into new ones. The N \times N proximity matrix D contains all distances d(i,j). The clusterings are assigned sequence numbers 0,1,......, (n − 1) and L(k) is the level of the kth clustering. A cluster with sequence number m is denoted (m) and the proximity between clusters (r) and (s) is denoted d[(r),(s)].

The algorithm is composed of the following steps:

  1. Begin with the disjoint clustering having level L(0) = 0 and sequence number m = 0.
  2. Find the most similar pair of clusters in the current clustering, say pair (r), (s), according to d[(r),(s)] = min d[(i),(j)] where the minimum is over all pairs of clusters in the current clustering.
  3. Increment the sequence number: m = m + 1. Merge clusters (r) and (s) into a single cluster to form the next clustering m. Set the level of this clustering to L(m) = d[(r),(s)]
  4. Update the proximity matrix, D, by deleting the rows and columns corresponding to clusters (r) and (s) and adding a row and column corresponding to the newly formed cluster. The proximity between the new cluster, denoted (r,s) and old cluster (k) is defined as d[(k), (r,s)] = min d[(k),(r)], d[(k),(s)].
  5. If all objects are in one cluster, stop. Else, go to step 2.

kevinjc 發表在 痞客邦 留言(0) 人氣()


kevinjc 發表在 痞客邦 留言(0) 人氣()

其實人長的不怎樣(以作怪奪帥),但舞台效果很棒。


kevinjc 發表在 痞客邦 留言(0) 人氣()